
Pedagogical Cluster- Journal of Pedagogical Developments 
PCJPD: Volume 2 Issue 11, November 2024, online: ISSN 2956-896X 

 
Website: https://euroasianjournals.org/index.php/pc/index 

68 | P a g e  

Licensed under CC Attribution-NonCommercial 4.0 

Teaching Of The Extrema Of The Function In 
Mathematical Lessons 

 
Adburaxmanov A.G. 

Chirchik State Pedagogical University 
 

Abstract: in this article discusses about teaching of the extrema of the function 
in mathematical lessons. 
Key words: extrema, function, mathematical, lesson. 
 
 Let us consider a function 𝑦 = 𝑓(𝑥)defined on the interval (𝑎, 𝑏)of the 
numerical axis 𝑅. Let the point be 𝑥0 ∈ (𝑎, 𝑏). 
 Definition 1. The interval (𝑥0 − 𝛿, 𝑥0 + 𝛿), where 𝛿 > 0is called 𝛿the 
neighborhood of the point 𝑥0and is denoted by 𝑈𝛿(𝑥0): 

𝑈𝛿(𝑥0) = {𝑥 ∈ 𝑅:  𝑥0 − 𝛿 < 𝑥 < 𝑥0 + 𝛿;  𝛿 > 0}. 
 Definition 2. If exists 𝛿, then the neighborhood of the point 𝑥0 𝑈𝛿(𝑥0) ⊂
(𝑎, 𝑏)such that for any 𝑥 ∈ 𝑈𝛿(𝑥0)equality holds 

𝑓(𝑥) ≤ 𝑓(𝑥0), 
that's what it  𝑥0's called point of local maximum of the function 𝑓(𝑥). 

Fig. 1a. Fig. 1b. 
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Fig. 1c. 
Definition 3. If exists 𝛿, then the neighborhood of the point 𝑥0 𝑈𝛿(𝑥0) ⊂

(𝑎, 𝑏)such that for any 𝑥 ∈ 𝑈𝛿(𝑥0)equality holds 
𝑓(𝑥) ≥ 𝑓(𝑥0), 

that's what it  𝑥0's called point of local minimum of the function 𝑓(𝑥). 

 
Fig. 2a. 

Fig. 2b. 
Fig. 2c. 

 In the future, for brevity, we will call the points of the local maximum of 
the function 𝑓(𝑥)the points of the maximum of the function, and 𝑓(𝑥0)we will 
denote the values of the maximum of the function by𝑓(𝑥) 

𝑓(𝑥0) = 𝑚𝑎𝑥
𝑥∈𝑈𝛿(𝑥0)

𝑓(𝑥). 

 Similarly, we will call the points of the local minimum of the function 
𝑓(𝑥)the points of the minimum of the function, and 𝑓(𝑥0)we will denote the 
values by the minimum of the function𝑓(𝑥) 

𝑓(𝑥0) = 𝑚𝑖𝑛
𝑥∈𝑈𝛿(𝑥0)

𝑓(𝑥). 

 Figures 1 a) – 1 c) show maximum points, and figures show minimum 
points. 
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 The points of maximum and minimum of a function are called extreme 
points, and the maximum and minimum of a function are called extrema 
(extreme values of a function). 
 Example 1. Let us consider a function defined on an interval 
(𝑎, 𝑏)graphically : 

 
According to definitions 2–3, points 𝑥1, 𝑥2, 𝑥4, 𝑥6are maximum points, and 
points 𝑥3, 𝑥5, 𝑥7, 𝑥8are minimum points of the given function. 
 Example 2. Let's consider the function 

𝑓(𝑥) =

{
 
 

 
 
−𝑥2 − 2𝑥 + 3, −5 < 𝑥 ≤ −1

4, −1 < 𝑥 ≤ 1
15 − 7𝑥

2
,   1 ≤ 𝑥 < 3

𝑥2 − 6𝑥 + 6,   3 < 𝑥 < 6

 

on the interval (−5,6).  
 The graph of this function has the form (see example 2. from § 1): 
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 The point 𝑥1 = 3is a minimum point of the function 𝑓(𝑥), according to 
definition 3, and any point on the segment is [−1,1]a maximum point, according 
to definition 2. 
In maple 
 
 

 

 

>  

 
 

 
 
 Definition 4. The point at which the derivative of a function 𝑓(𝑥)vanishes 
or does not exist is called a critical point 𝑓(𝑥). 
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 Theorem 1. ( Necessary condition for an extremum) . If a point 𝑥0 ∈
(𝑎, 𝑏)is an extremum point of a function 𝑓(𝑥), then 𝑥0is a critical point of the 
function 𝑓(𝑥). 
 This means that, based on Theorem 1, the extremum points of a function 
𝑓(𝑥)should be sought among its critical points. 
 The question "will the function reach its extremum at these points or not" 
can be answered using sufficient conditions for an extremum. To form them, we 
introduce the concepts of left and right neighborhoods of a point 𝑥0 ∈ (𝑎, 𝑏). 
 Definition 5. The interval (𝑥0 − 𝛿, 𝑥0) ⊂ (𝑎, 𝑏), where 𝛿 > 0, is called the 
left 𝛿neighborhood of the point. 𝑥0and is denoted by 𝑈𝛿

−(𝑥0): 
𝑈𝛿
−(𝑥0) = {𝑥 ∈ 𝑅:  𝑥0 − 𝛿 < 𝑥 < 𝑥0;  𝛿 > 0}. 

Definition 6. The interval (𝑥0, 𝑥0 + 𝛿) ⊂ (𝑎, 𝑏), where 𝛿 > 0, is called the 
right 𝛿-hand neighborhood of the point. 𝑥0and is denoted by 𝑈𝛿

+(𝑥0): 
𝑈𝛿
+(𝑥0) = {𝑥 ∈ 𝑅:  𝑥0 < 𝑥 < 𝑥0 + 𝛿;  𝛿 > 0}. 

Theorem 2. ( First-order sufficient condition). Let the function 𝑓(𝑥)be 
continuous at a point  𝑥0and have a finite derivative on 𝑈𝛿(𝑥0)\{𝑥0}. 

a) if for any 𝑥 ∈ 𝑈𝛿
−(𝑥0) 𝑓

′(𝑥) > 0and for any 
𝑥 ∈ 𝑈𝛿

+(𝑥0) 𝑓
′(𝑥) < 0, then 𝑥0it is the maximum point of the function 

𝑓(𝑥); 
b) if for any 𝑥 ∈ 𝑈𝛿

−(𝑥0) 𝑓
′(𝑥) < 0and for any 

𝑥 ∈ 𝑈𝛿
+(𝑥0) 𝑓

′(𝑥) > 0, then 𝑥0it is the minimum point of the function 
𝑓(𝑥); 

c) if for any 𝑥 ∈ 𝑈𝛿
−(𝑥0) 𝑓

′(𝑥) > 0and for any 
𝑥 ∈ 𝑈𝛿

+(𝑥0) 𝑓
′(𝑥) > 0, or for any 𝑥 ∈ 𝑈𝛿

−(𝑥0) 𝑓
′(𝑥) < 0and for any 𝑥 ∈

𝑈𝛿
+(𝑥0) 𝑓

′(𝑥) < 0, then 𝑥0it is not an extreme point of the function 𝑓(𝑥). 
In other words, if the derivative of a function 𝑓(𝑥)changes sign when 

passing through a critical point 𝑥0, then the function 𝑓(𝑥)has an extremum at 
this point. If the derivative of a function 𝑓(𝑥)does not change sign when passing 
through a critical point 𝑥0, then the function does not have an extremum at this 
point 𝑓(𝑥). 

Example 3. Investigate the function for extremum 

𝑓(𝑥) =
𝑥2

𝑥2+3
. 

Solution. The domain of the function 𝑓(𝑥)is the entire number line 𝑅. 
According to Theorem 1, we find the critical points of the function 𝑓(𝑥), for 
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which, according to the rule for finding the derivative of a ratio, we obtain the 
derivative 
𝑓′(𝑥)this function 

𝑓′(𝑥) =
2𝑥(𝑥2 + 3) − 2𝑥2𝑥

(𝑥2 + 3)2
=

6𝑥

(𝑥2 + 3)2
. 

 Using the definition of a critical point of a function, 𝑓(𝑥)first equating 
𝑓′(𝑥)to zero, i.e. 

6𝑥

(𝑥2 + 3)2
= 0, 

we determine that the last equality holds for 𝑥 = 𝑥0 = 0. Since the function 
𝑓(𝑥)has finite derivatives in 𝑅, the only critical point of the function 𝑓(𝑥)is 𝑥0. 
 Let us determine the signs of the derivative of the function 𝑓(𝑥)in the left 
and right neighborhoods of the point 𝑥0: 
 for anyone𝑥 ∈ 𝑈𝛿

−(0) = {𝑥 ∈ 𝑅:−𝛿 < 𝑥 < 0;  0 < 𝛿 < 1} 

𝑓′(𝑥) =
6𝑥

(𝑥2 + 3)2
< 0, " −  ", 

 for anyone𝑥 ∈ 𝑈𝛿
+(0) = {𝑥 ∈ 𝑅: 0 < 𝑥 < 𝛿;  0 < 𝛿 < 1} 

𝑓′(𝑥) =
6𝑥

(𝑥2 + 3)2
> 0,  + . 

 This means that the derivative of the given function changes sign from 
minus ("- ") to plus ("+") when passing through the critical point 𝑥0. The given 
function is continuous at the point 𝑥0. Therefore, according to Theorem 2, 𝑥0is 
the minimum point of the given function and its minimum is equal to 

𝑓(𝑥0) = 𝑚𝑖𝑛
𝑥∈𝑈𝛿(𝑥0)

𝑓(𝑥). 

 
In maple 

 

>  
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>  

 

>  

  
 
 
 
 
>  

 
 
 
 

Example 4. Investigate the function for extremum 
 

𝑓(𝑥) = 𝑥
2
3. 

In maple 
 
 

>  

 
> smartplot ( ); 
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Solution : The given function is defined and continuous on the entire 

number axis. The derivative of the given function, when𝑥 ≠ 0 is defined as: 

𝑓′(𝑥) =
2

3√𝑥
3  . 

> diff ((x^ 2)^ (1/3), x); 
 

 
Derivative of a function 𝑓(𝑥)at 𝑥 = 0does not exist: 

lim
∆𝑥→+0

𝑓(0 + ∆𝑥) − 𝑓(0)

∆𝑥
= lim

∆𝑥→+0

1

∆𝑥
1
3

= +∞; 

lim
∆𝑥→−0

𝑓(0 + ∆𝑥) − 𝑓(0)

∆𝑥
= lim

∆𝑥→−0

1

∆𝑥
1
3

= −∞. 

( the function 𝑓′(𝑥)suffers a discontinuity of the second kind (an infinite jump 
at the point 𝑥 = 0)). 
 This means that the point 𝑥 = 0is a critical point of the function 
𝑓(𝑥)according to Definition 4. When passing through the critical point, 𝑥 = 0the 
derivative 𝑓′(𝑥)changes sign from minus ("-") to plus ("+"). The given function 
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is continuous at the critical point. According to Theorem 2, the critical point 𝑥 =
0is the minimum point of the function 𝑓(𝑥)and its minimum is equal to 

𝑓(0) = 𝑚𝑖𝑛
𝑥∈𝑈𝛿(0)

𝑓(𝑥) = 0. 

 
 

Example 5. Investigate the function for extremum 
𝑓(𝑥) = 𝑎𝑟𝑐𝑠𝑖 𝑛(𝑐𝑜𝑠𝑥). 

>  
 

> smartplot ( ); 

 
 



Pedagogical Cluster- Journal of Pedagogical Developments 
PCJPD: Volume 2 Issue 11, November 2024, online: ISSN 2956-896X 

 
Website: https://euroasianjournals.org/index.php/pc/index 

77 | P a g e  

Licensed under CC Attribution-NonCommercial 4.0 

Solution . The domain of the function 𝑓(𝑥)is the entire number line. Let 
us find the expression for the derivative of this function as a complex function: 

𝑓′(𝑥) =
(𝑐𝑜𝑠𝑥)′

√1 − 𝑐𝑜𝑠2𝑥
∙

−𝑠𝑖𝑛𝑥

√1 − 𝑐𝑜𝑠2𝑥
= −

𝑠𝑖𝑛𝑥

|𝑠𝑖𝑛𝑥|
. 

> diff ( , x); 
 

 
From the form of the expression for the derivative of the function 𝑓(𝑥), 

we conclude that the given function has no derivative at the points at which 
 𝑠𝑖𝑛𝑥 = 0. ( The function 𝑓′(𝑥)suffers a discontinuity of the first kind). The 
solution to the last equation is the points𝑥𝑘 = 𝑘𝜋, 𝑘 = 0; ±1; ±2; ±3;…. 

This means that the points 𝑥𝑘 = 𝑘𝜋, 𝑘 = 0; ±1; ±2; ±3;…are critical 
points of the function 𝑓(𝑥). The points 𝑥𝑘 = 𝑘𝜋, 𝑘 = 0; ±1; ±2; ±3;…are the 
maximum points of the given function according to Theorem 2, since when 
passing through these points the derivative of the given function changes sign 
from plus (“+”) to minus (“-”), and at these points the given function is 
continuous. Indeed, 

𝑓′(𝑥) = 1at𝑠𝑖𝑛𝑥 < 0, 
𝑓′(𝑥) = −1at𝑠𝑖𝑛𝑥 > 0. 

Similarly, the points 𝑥𝑘 = 𝑘𝜋, 𝑘 = 2𝑛 + 1, 𝑛 = 0; ±1; ±2; ±3;…are the 
minimum points of the given function according to Theorem 2, since when 
passing through these points, the derivative of the given function changes sign 
from minus (“-”) to plus (“+”), and at these points the given function is 
continuous. 

 
 Example 6. Investigate the function for extremum 

𝑓(𝑥) = 𝑥3 − 3𝑥2 + 3𝑥 + 5. 
>  
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 Solution : The domain of the function 𝑓(𝑥)is the entire number line. The 
derivative of this function is defined as: 

𝑓′(𝑥) = 3𝑥2 − 6𝑥 + 3. 
The solution to the equation 𝑓′(𝑥) = 0, i.e. 

3𝑥2 − 6𝑥 + 3 = 0 
is a point 𝑥 = 𝑥0 = 1.The derivative of a given function exists on the entire 
number axis. Therefore, the point 𝑥0is a critical point of the function 𝑓(𝑥). When 
passing through a critical point 𝑥0, the derivative of a given function does not 
change sign. According to Theorem 2, at a critical point , 𝑥0a given function does 
not have an extremum. 
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